
CS INSTRUMENTS

Translation of the original operating instructions

EN

VA 570

| FLOW |

The completeness and accuracy of this documentation have been carefully checked. We reserve the right to make technical changes at any time. These changes may result in deviations from the information provided in this documentation.

The original document was published in the manufacturer's national language (German). All translations are copies of the original document and are only valid in conjunction with the original.

All rights reserved.

© 2025 CS INSTRUMENTS GmbH & Co. KG

Edition and revision status: 12/2025 | V2.00 | 020001030

Table of contents

1	General information	5
1.1	Documentation	5
1.2	Symbols and labels used	5
1.3	Safety instructions and notes	5
2	Security	6
2.1	Intended use	6
2.2	Organizational measures of the operator	7
2.3	Residual risks	7
3	VA 570	9
3.1	Product overview	9
3.2	Product description	9
3.3	Type plate	9
3.4	Scope of delivery	9
3.5	Applicable documents	10
4	Transportation and storage	11
4.1	Delivery	11
4.2	Storage	11
5	Installation and commissioning	12
5.1	General installation instructions	12
5.2	Set up measuring point	13
5.3	Assemble product	14
5.4	Complete the installation work	14
5.5	Connect product	15
5.6	Initial commissioning	19
5.7	Switching on and off	20
6	Operation	21
6.1	Control elements	21
6.2	User interface	21
7	Configuration	22
7.1	Set up basic settings	22
7.2	Adjust configuration settings	23
7.3	Set interface parameters	25
7.4	Set output parameters	29
8	Consumption measurement	31
8.1	Adjust measurement parameters	31
8.1.1	Carry out zero point adjustment	31
8.1.2	Adjust creep suppression	32
8.2	Carry out consumption measurement	32
9	Maintenance and servicing	33
9.1	Clean product	33
9.2	Check cables	34
9.3	Check mechanical components and connections	35
9.4	Perform calibration	35

9.5	Update software	36
9.5.1	Download software package	36
9.5.2	Establish connection	36
9.5.3	Performing a software update	36
9.6	Error states	36
9.6.1	Correct error states	36
9.6.2	Restore factory settings	37
9.7	Customer service	37
10	Decommissioning and disposal	38
11	Appendix	39
11.1	Technical data	39
11.2	Dimensions	40
11.3	Measuring ranges	41
11.4	Register assignment	42
11.5	Declaration of conformity	45

1 General information

For the sake of simplicity, this documentation refers to the product "VA 570" simply as the **product**.

1.1 Documentation

This documentation provides important warnings, safety precautions, and instructions for the safe and proper operation of the product.

- ▷ Before operating the product, read this documentation carefully and ensure that you fully understand its contents.
- ▷ Always keep this documentation readily available for reference purposes.

1.2 Symbols and labels used

The following markings and symbols are used in this documentation:

Labeling/symbol	Usage
Text	Important text passages are highlighted
text	Control elements VA 570
Text	Software user interface
Text > Text > Text	User interface click path
2 Security	Cross-reference to text passage, figure or chapter
•	Enumeration, list element
▷	Call to action as part of an instruction. Can also be numbered.
✓	Final or intermediate result of an action instruction
✗	Final or intermediate result of an instruction that has not been achieved
!	Note on an intermediate result

Table 1: Symbols and labels used

1.3 Safety instructions and notes

	DANGER Indicates an imminent danger. Death or very serious injuries may result.
	WARNING Indicates a potentially dangerous situation. Death or serious injury may result.
	CAUTION Indicates a potentially dangerous situation. Slight or minor injuries may result.
	NOTICE Indicates a potentially dangerous situation. Material or environmental damage may result.
	NOTE Indicates important information, application tips, and useful information for proper working.

2 Security

The product has been designed, manufactured, and functionally tested in accordance with applicable safety regulations.

To ensure operational safety, please observe the following:

- Chapter "Intended use"
- Chapter "Organizational measures to be taken by the operator"
- Chapter "Residual hazards"

Regardless of the instructions provided in this manual, all applicable country-specific occupational health and safety regulations must be observed.

2.1 Intended use

The operational safety of the product supplied is only guaranteed if it is used as intended.

The product enables continuous flow measurement according to the thermal mass flow principle.

The product can be configured to measure a defined selection of pure gases or gas mixtures. It enables the consumption measurement of gases such as air (including humid compressed air) and technical gases. In the explosion-proof version (Ex), it is also possible to measure explosive gases, e.g. methane (natural gas), propane and hydrogen.

Intended use exists in particular if

- the installation is exclusively downstream of a functioning dryer,
- the installation is carried out in horizontal pipes (recommended) or in vertical risers,
- the product is correctly positioned,
- an undisturbed flow is ensured by maintaining the required calming distances upstream and downstream of the sensor,
- the product is operated within the specified pressure range,
- the permissible operating temperature is observed,
- the zero point adjustment is carried out correctly and the relevant measurement parameters and the flow medium are specified and
- calibration and maintenance are carried out regularly by qualified personnel.

Any use outside these framework conditions, in particular if the pressure or temperature is exceeded or if liquids or hazardous substances are introduced, is considered improper use and can lead to malfunctions or irreversible damage.

Any use beyond or deviating from this is considered improper use. The manufacturer accepts no liability for any resulting damage.

Intended use also includes:

- Adherence to the supplied documentation
- Compliance with all inspection and maintenance requirements specified by the manufacturer

Reasonably foreseeable misuse or improper handling are:

- Contact with liquids
- Contact with steam, aggressive gases or hazardous substances
- Use as a climbing aid
- Operation outside the technical specifications
- Tampering with the product in any way that does not comply with the intended and described procedures
- Standard version: Use in potentially explosive atmospheres

2.2 Organizational measures of the operator

The product may only be used if it is in perfect technical condition. It may no longer be used if it has been technically modified or damaged.

Instructions

The information on commissioning, operation, and maintenance provided in these instructions must be followed. These instructions should always be kept accessible with the product.

Personnel

People working on the product must read these instructions, particularly the chapter entitled " 2 Security", before starting work. This also applies to people who only work occasionally.

2.3 Residual risks

DANGER

Risk of injury due to insufficiently qualified personnel

Improper handling of the product can lead to serious personal injury and damage to property. All work described in these instructions may only be carried out by qualified specialists.

Qualified personnel are persons with appropriate training and in-depth knowledge of measurement, control, regulation and compressed air technology. They must also be familiar with the applicable national regulations, standards and directives and be able to assess risks independently.

DANGER

Injury or death from touching live parts

When carrying out installation and maintenance work, you may encounter parts that carry dangerous voltages during operation. Touching live parts can lead to death.

- ▷ Work on electrical systems or equipment may only be carried out by qualified electricians or by instructed persons under the direction and supervision of a qualified electrician in accordance with electrotechnical regulations.

DANGER

Danger due to overpressure or incorrect installation

The operating pressure in the pipe depends on the application. At pressures above 16 bar, there is an increased risk of injury due to sudden escaping pressure medium.

- ▷ Only operate the product within the permissible limit values.
- ▷ Observe the end values of the upper range values.

DANGER

Danger from escaping compressed gas

Contact with escaping pressurized gas or unsecured system parts can lead to serious injury or death.

- ▷ Only carry out installation and maintenance work when the system is depressurized.
- ▷ Only use pressure-resistant installation material and suitable tools that are in perfect working order.
- ▷ Before pressurizing, check all system parts and tighten all screw connections.
- ▷ Always open valves slowly to avoid pressure surges.
- ▷ Install compressed air lines tightly.
- ▷ Ensure that people and objects cannot come into contact with escaping compressed gas.
- ▷ Avoid transmitting vibrations, oscillations and shocks to the product.
- ▷ Carry out a leak test of the system before commissioning.

WARNING**Danger during operation outside the specified limit values**

Exceeding or falling below the permissible operating, storage or transportation limits can endanger people and property. There is a risk of malfunctions and operating faults as well as falsified measurement results.

- ▷ Only operate the product within the limit values specified on the rating plate and in the technical data.
- ▷ Observe the permissible storage and transportation conditions.

WARNING**Explosion hazard**

Risk of explosion in hazardous areas due to ignition sources (e.g. sparking) when using devices that are not suitable for use in hazardous areas.

- ▷ Only use the Ex version of this product in Ex-protected areas.
- ▷ Further information on this can be found in the "Operating instructions - Ex supplementary document".

WARNING**Risk of injury due to unauthorized modifications**

Unauthorized device modifications can cause injuries and lead to the loss of the operating permit. Operation is only permitted with original components.

- ▷ Unauthorized modifications are not permitted and lead to the exclusion of any warranty and liability by the manufacturer (CS INSTRUMENTS).

CAUTION**Danger due to malfunction of the product**

Incorrect installation or inadequate maintenance can lead to malfunctions that impair the function of the product and can lead to dangerous misinterpretations.

- ▷ Observe all applicable national regulations and safety regulations during installation and operation.

CAUTION**Risk of burns due to heated sensor shaft**

Hot air, gases or gas mixtures in the pipe can heat up the sensor shaft considerably.

- ▷ Only touch the sensor shaft when it has cooled down.
- ▷ Wear suitable protective gloves if necessary.

NOTICE**Measuring errors due to dirt particles in the compressed air**

Dirt particles and fluids can contaminate the product and lead to a malfunction or fault.

- ▷ The system operator must ensure the prescribed purity of the fluids approved for the application as well as appropriate cleaning and maintenance intervals.
- ▷ The manufacturer (CS INSTRUMENTS) accepts no warranty or liability for incorrect use.

3 VA 570

3.1 Product overview

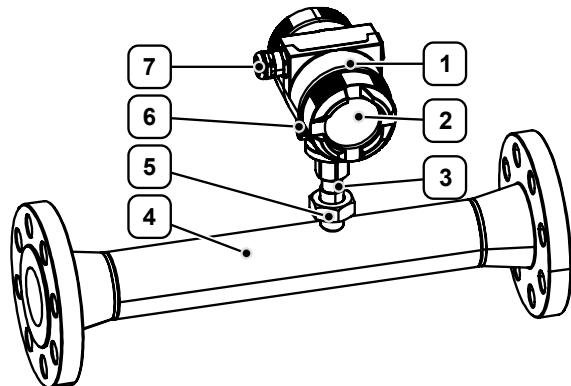


Figure 1: VA 570 (example)

1	Housing	5	Connection nut
2	Screen (optional)	6	Potential equalization
3	Sensor shaft	7	Cable bushing (sensor cable inputs)
4	Measuring section		

3.2 Product description

The product is a flow sensor for continuous measurement of flow, consumption and temperature in gas lines¹. It is designed for use in compressed air and gas mixtures and provides reliable measurement results even under humid operating conditions.

The housing protects the product from environmental influences and allows it to be used in different operating environments. Integrated temperature compensation automatically takes into account the influencing variables of the operating conditions.

The product can be integrated into pipes of various sizes and installed in both horizontal and vertical pipes. Typical applications include consumption measurement in compressed air systems, compressor performance monitoring and efficiency analyses in gas and compressed air networks.

3.3 Type plate

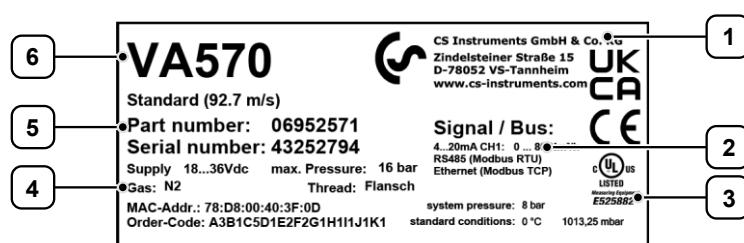


Figure 2: Nameplate (example)

1	Manufacturer information	4	Electrical connection data
2	Technical data	5	Material/serial number
3	Conformity/certification marking	6	Product designation

3.4 Scope of delivery

The scope of delivery includes the following components:

- VA 570
- Measuring section

¹ The "Pressure" option is available as an option.

- 120 Ω resistor
- Calibration certificate
- Translation of the original operating instructions

3.5 Applicable documents

This Translation of the original operating instructions contains information on the operation of the product "VA 570". This essentially includes information such as

- Installation and commissioning
- configuration
- Maintenance and servicing

NOTE

In addition to the basic registers, the device provides further registers.

Further information on this can be found in the "Operating instructions - Modbus installation".

NOTE

Additional, binding requirements apply to the Ex-version of this product. Planning, installation, commissioning, operation and maintenance must be carried out exclusively in accordance with the supplementary Ex documentation.

The Ex-documentation specifies, among other things

- Permitted zones/areas
- Temperature class and ambient conditions
- Connection/shielding (incl. EMC specifications)

Further information can be found in the "Operating instructions - Ex supplementary document".

4 Transportation and storage

NOTE

Improper transportation, storage and commissioning are accident-prone and can cause damage or malfunctions to the delivered product, for which the manufacturer (CS INSTRUMENTS) does not grant any liability or warranty.

4.1 Delivery

Transport damage

- ▷ Check the delivered components for any visible transportation damage.
- ▷ Report any transportation damage to the following parties immediately:
 - the carrier
 - the manufacturer's customer service (CS INSTRUMENTS)
- ▷ Ensure that the product is handled properly during transportation.

Packaging

- ▷ Keep the original packaging for any future transportation or storage.

4.2 Storage

To avoid damage due to environmental influences, the product must be stored properly when not in use.

- ▷ If possible, store the product in its original packaging.
- ▷ Store the product in dry, dust-free rooms.
- ▷ Keep the product away from direct sunlight, heat sources, and corrosive or aggressive chemicals.

5 Installation and commissioning

DANGER

Risk of injury due to pressurized components

Escaping medium can cause serious injuries.

- ▷ To minimize potential hazards, do not work directly above the product, but to the side of it.
- ▷ Secure the housing by hand during assembly and disassembly.

CAUTION

Danger from commissioning a damaged product

If a damaged product is installed or put into operation, it may result in functional failures, electrical hazards, or mechanical risks.

- ▷ Before each start-up, inspect the product, accessories, and all supply lines for visible damage, loose parts, or missing components.
- ▷ Immediately take any defective product out of operation immediately.

5.1 General installation instructions

DANGER

Danger due to overpressure or incorrect installation

The operating pressure in the pipe depends on the application. At pressures above 16 bar, there is an increased risk of injury due to sudden escaping pressure medium.

- ▷ Only operate the product within the permissible limit values.
- ▷ Observe the end values of the upper range values.

CAUTION

Observe the process connection

To ensure safe and reliable operation of the product, the following points must be observed when connecting the process:

- ▷ **Ease of maintenance:** Install an oil and grease-free shut-off valve between the product and the process to facilitate maintenance work.
- ▷ **Protection of the product:** Avoid unprotected installation, as liquid or solid impurities can be deposited in the product and permanently impair the measuring accuracy.
- ▷ **Compressed air quality:** Only use clean compressed air without harmful components such as explosive or chemically unstable gases, acids, bases, oils or condensate.
- ▷ **Seals/sealants:** Only use correctly dimensioned seals/sealants that are suitable for the flow medium and meet the required compressed air quality. Permissible sealants are, for example, sealing rings made of copper or aluminum, elastomer sealing rings with metal backing, sealing tape or sealing cord as well as other equivalent sealants.
- ▷ **Installation location:** Avoid installation locations where water can accumulate.

Observe installation location and flow pattern

NOTICE

Measurement deviations due to disturbed flow pattern

The required inlet and outlet distances must be observed to ensure an undisturbed flow pattern.

- ▷ Avoid diameter jumps at the joints of the pipe (max. 1 mm).
- ▷ For further information, see ISO 14511:2019-01.

The measurement result can be influenced by flow disturbances. For the specified accuracies, the product must be installed centrally in a straight pipe section. An undisturbed flow path requires sufficiently long, straight inlet and outlet sections without edges, seams or bends.

▷ When positioning the product, observe the required inlet and outlet sections to ensure precise measurement results.

- ⚠ If these distances are shortened, increased measurement deviations must be expected. It is therefore **essential** to avoid shortening the calming distances.

	Flow obstacle	Inlet section (L1)	Outlet section (L2)
1	Low curvature (bend < 90°)	12 x DN	5 x DN
2	Reduction (pipe narrows towards the measuring section)	15 x DN	5 x DN
3	Expansion (pipe expands towards the measuring section)	15 x DN	5 x DN
4	90° bend / T-piece	15 x DN	5 x DN
5	2 x bend (90°) 1-dimensional change of direction	20 x DN	5 x DN
6	2 x bends (90°) 3-dimensional change of direction	35 x DN	5 x DN
7	Shut-off valve	45 x DN	5 x DN

Table 2: Required minimum lengths

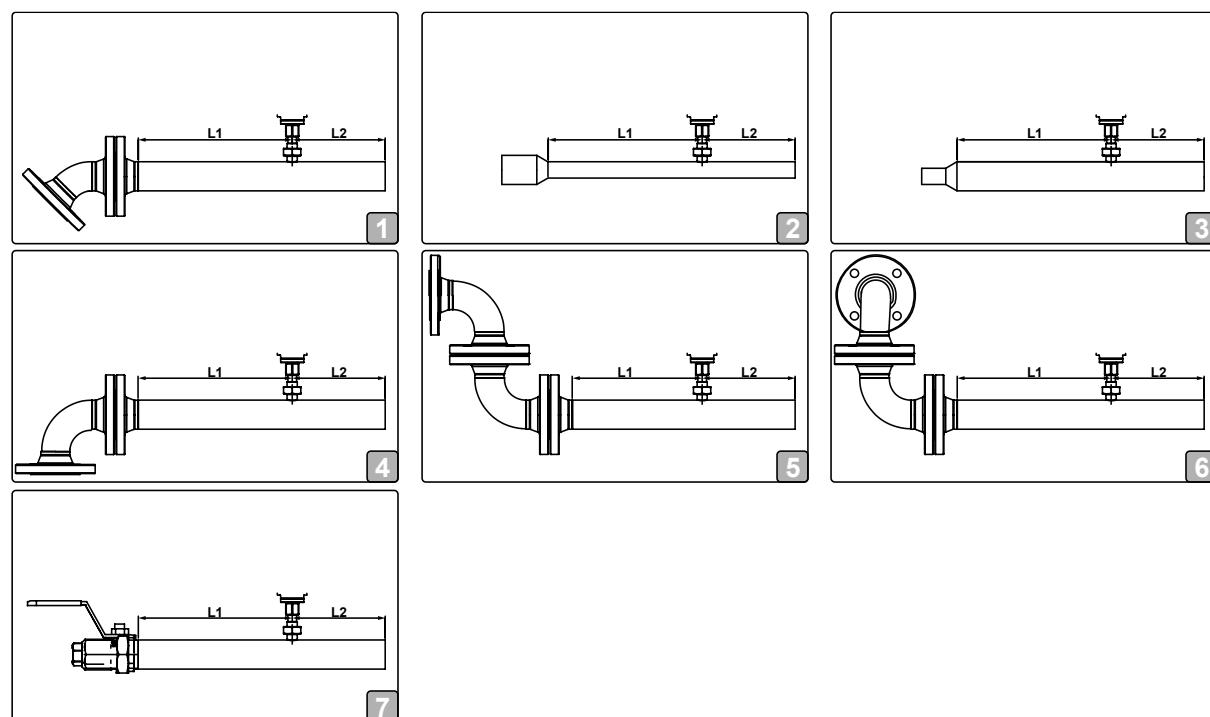


Figure 3: Flow obstacles in front of the measuring section (example)

5.2 Set up measuring point

Setting up the measuring point

To ensure precise measurement results, the measuring point must be set up correctly.

Prerequisite

- The system is depressurized.

▷ Select a suitable installation location for the measuring point.

▷ Set up the measuring point correctly.

- ⚠ Installation is only permitted when the system is depressurized.

▷ Check the installation for leaks and a secure fit.

5.3 Assemble product

Mounting the sensor

Depending on the delivery status, the sensor and measuring section are supplied pre-assembled; if necessary, the sensor must be mounted on the measuring section.

- ▷ Provide the mounting thread with suitable sealing material that matches the flow medium.
- ▷ Screw the sensor (SW 32) pressure-tight into the measuring section.
 - ⚠ The existing groove ensures the correct alignment of the sensor.
- ▷ Observe the direction of flow indicated on the product (flow direction arrow).
 - ⚠ Depending on the product variant, the direction arrow is attached as a sticker on the measuring section, on the housing or on the sensor shaft.
- ▷ Check the installation for leaks and a secure fit.
- ▷ Tighten the connection nut.
 - ⚠ Tightening torque: 25-30 Nm

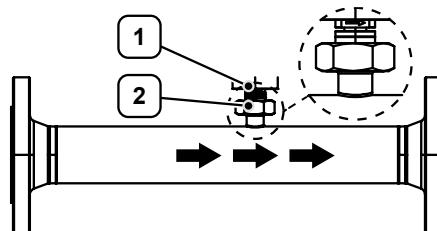


Figure 4: Installing the sensor (example)

1 Direction arrow flow direction
2 Connection nut

5.4 Complete the installation work

Aligning the sensor housing

- ▷ Loosen the nut on the sensor shaft.
 - ⚠ The nut must only be loosened, not completely unscrewed.
- ▷ Turn the sensor housing to the desired position (max. 300°).
 - ⚠ Overturning is prevented by the internal stop.
 - ⚠ If necessary, the display can be rotated using the software. Further information can be found in chapter "7.1 Set up basic settings".
- ▷ Tighten the nut again.
 - ⚠ Tightening torque: 15 Nm

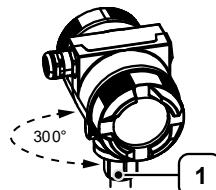


Figure 5: Aligning the sensor housing (example)

1 Nut

Check installation

- ▷ After installation, check the pressure-tight installation of the sensor.
- ▷ Ensure that the pipework is clean after installation.

5.5 Connect product

DANGER

Danger to life due to electrical voltage

During installation, maintenance or in the event of a fault, touchable conductive parts can carry dangerous voltages. Contact with uninsulated parts or mains voltage can lead to serious injury or death.

- ▷ Do not operate the product if power supply cables are damaged or housing parts are defective or removed.
- ▷ Strictly observe all locally applicable regulations and safety regulations.
- ▷ Only carry out work on electrical connections when the power supply is switched off. Secure the product against unintentional restarting.
- ▷ Check all electrical connections before commissioning and regularly during operation.

DANGER

Injury or death from touching live parts

When carrying out installation and maintenance work, you may encounter parts that carry dangerous voltages during operation. Touching live parts can lead to death.

- ▷ Work on electrical systems or equipment may only be carried out by qualified electricians or by instructed persons under the direction and supervision of a qualified electrician in accordance with electrotechnical regulations.

NOTICE

Wiring - general notes

- ▷ Keep stripping lengths as short as possible.
- ▷ Close unused cable entries with end caps.
- ▷ Use shielded connection cables.
- ▷ Use cables with a cross-section $\geq 0,25 \text{ mm}^2$.
- ▷ Tightening torque for cap nut (cable gland): **9 Nm**

NOTICE

Permissible loads and voltages

The permissible loads and voltages must be observed when connecting. Failure to do so may result in damage to the connection or malfunctions.

- ▷ Observe the permissible loads and voltages when connecting.
- ▷ Further information can be found in chapter "11.1 Technical data".

Connect the product electrically

CAUTION

Communication faults or data transmission failure

If the product is used at the end of a Modbus system, termination is required.

- ▷ To do this, connect the supplied 120 Ω resistor to pin 1 and pin 3 of the "X2" connector.

All connections required for operation are located on the rear of the housing.

- ▷ Loosen the set screw.
- ▷ Remove the housing cover.
- ▷ Connect all necessary electrical connections to the product.
- ▷ Observe the country-specific regulations on electrical safety.
- ▷ Install the housing cover.
 - ① Tightening torque: 3 Nm
- ▷ Ensure that the seals are seated correctly to prevent leaks and malfunctions.
- ▷ Replace the set screw and tighten it.
 - ① Tightening torque: 2 Nm

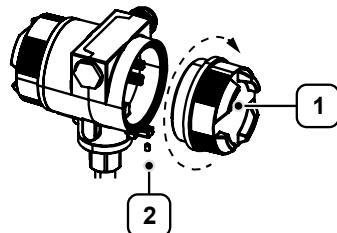


Figure 6: Connecting the product electrically (example)

1 Housing cover 2 Set screw

Version	Cable diameter [mm]
Standard version	Ø 5-9
Ex version	Ø 5-10

Table 3: Permissible cable diameters

Designation	Assignment	Galvanic isolation
X1 Power supply	Pin 1 (VB- (negative power supply GND)) Pin 2 (VB+ (positive power supply))	
X2 Modbus	Pin 1 (Modbus (B)) Pin 2 (Modbus cable shield) Pin 3 (Modbus (A))	
X3 Current output	Pin 1 (I- Active) Pin 2 (I+ active)	No
X4 Direction / pulse	Pin 1 (pulse / alarm) Pin 2 (pulse / alarm) Pin 3 (direction input) Pin 4 (GND)	Yes
X5 Current output 1 (optional; version: active or passive)	Pin 1 (I-) Pin 2 (I+)	Yes
X6 Current output 2 (optional; version: active or passive)	Pin 1 (I-) Pin 2 (I+)	
X7 M-Bus (optional)	Pin 1 (M-Bus) Pin 2 (M-Bus)	Yes
X8 IO-Link (optional)	Pin 1 (L+) Pin 2 (optional OUT) Pin 3 (L-) Pin 4 (C / Q)	
X9 Highway Addressable Remote Transducer (HART) ¹ (optional)	Pin 1 (+24 V (HART)) Pin 2 (0 V (HART)) Pin 3 (SHIELD)	No

Table 4: Pin assignment

¹ Modbus interface: reserved internally, not available externally

Designation	Wiring diagram
Supply voltage	<p>Main Board</p>
Modbus RTU	<p>Main Board</p>
Pulse output	<p>Main Board</p>
M-Bus (optional)	<p>Option Board (M-Bus)</p>
Analog output 2 x 4-20 mA (optional)	<p>Option Board (2 x 4-20 mA)</p>

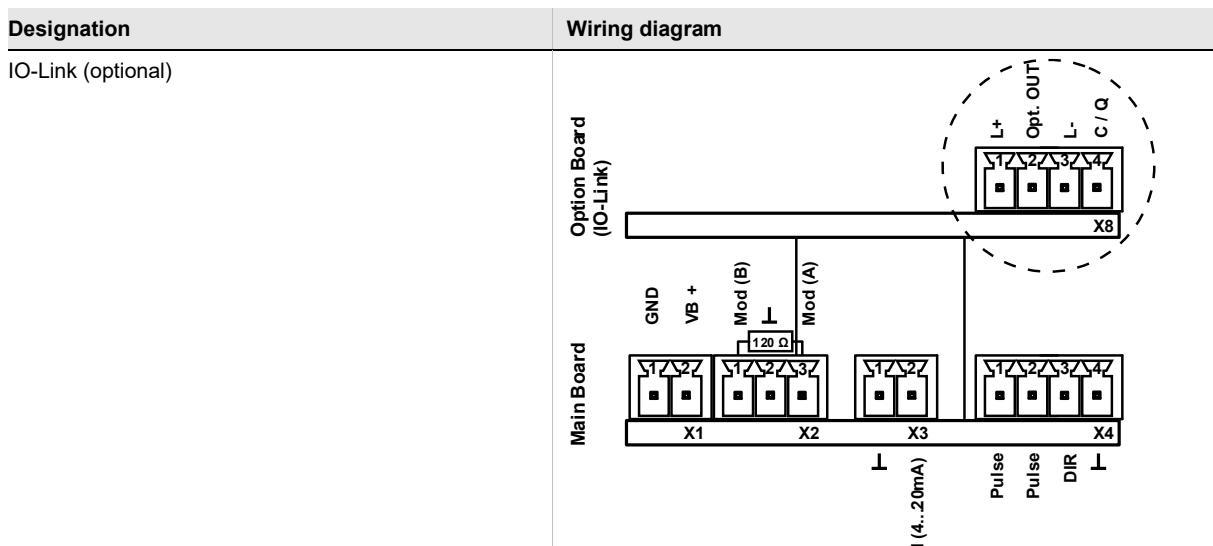


Table 5: Wiring diagrams Electrical connections

Modbus-TCP Ethernet (optional)

- Connection cable: Cat 6

Designation	Plug type	Assignment	Plug
Modbus-TCP Ethernet Power over Ethernet (PoE)	M12 (x-coded)	Pin 1-2 (data line) Pin 3-4 (data line) Pin 5-6 (PoE cable) Pin 7-8 (PoE cable)	

Table 6: Pin assignment

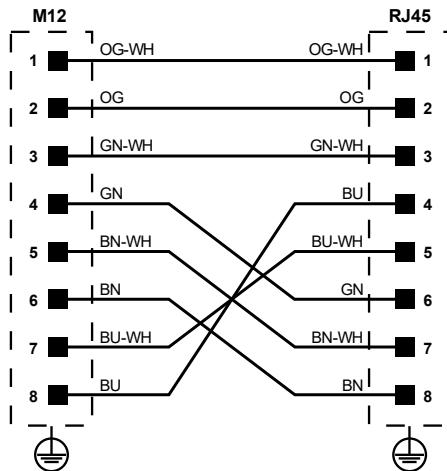


Figure 7: Wiring diagram Modbus-TCP Ethernet (T568B wiring standard)

HART (optional)

Prerequisite

- Optional HART interface available

The HART output is not electrically isolated, but must be operated via an electrically isolated power supply.

- Always connect the HART bus to the HART+ (24 V DC) and HART- (0 V) terminals in an electrically isolated manner.
- Do not use the sensor supply voltage for the HART bus, otherwise communication will not be possible.

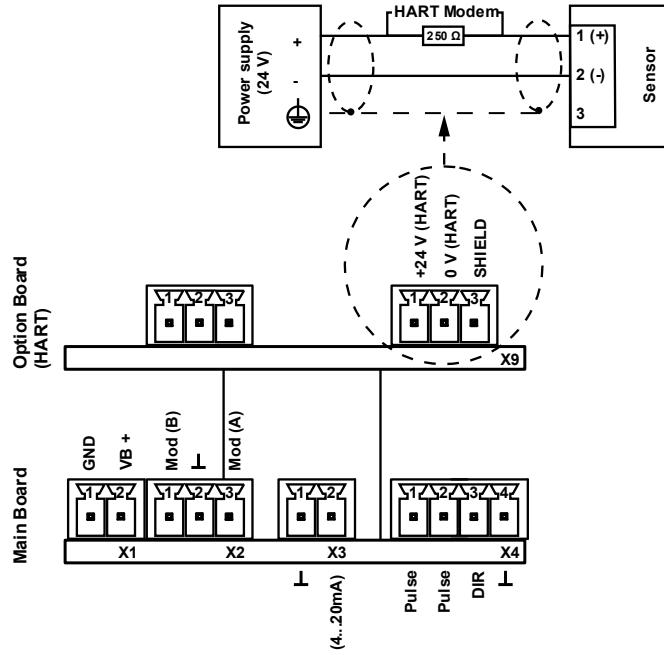


Figure 8: HART connection diagram

5.6 Initial commissioning

WARNING

Danger from pressurized components

Excessively low operating pressure over a long period of time increases the flow velocity in the pipe. There is a risk of injury from escaping pressure medium and impairment of the compressed air treatment system.

- Use a pressure maintenance system to ensure sufficient and stable operating pressure.
- Adjust the operating pressure to the consumer network during initial commissioning.

Putting the product into operation

- Connect the product to the power supply.
- After connecting the power supply, the product performs a device initialization that lasts approximately 3 seconds.
- The product measures the flow velocity in the middle of the pipe.

NOTE

To ensure the required measuring accuracy, a zero point adjustment is required at the start of each measurement.

Further information can be found in chapter "8.1.1 Carry out zero point adjustment".

5.7 Switching on and off

Switching on

- ▷ Connect the product to the power supply.
 - ✓ After connecting the power supply, the product performs a device initialization that takes about 3 seconds.
 - ⓘ The main view appears automatically after the device initialization is complete and serves as the starting point for all further operating procedures.

Switching off

- ▷ Disconnect the product from the power supply.
 - ✓ The device switches itself off.

6 Operation

6.1 Control elements

The user interface is operated using the two optical buttons.

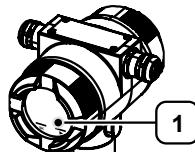


Figure 9: Operating elements (example)

1 Optical buttons

Select menu items

- ▷ Select menu items with the ▷ button.
- ▷ Confirm your selection with the OK button.

Selecting digit positions

- ▷ Select a desired digit position using the ▷ button.
- ▷ Activate the digit position with the OK button.
- ⚠ Press the ▷ button to increase the value at the active position by 1.
- ⚠ Press the OK button to confirm the value at the active position.

NOTE

For devices without an integrated screen, the user interface is operated exclusively via the service software.

Further information on this can be found in the "Operating instructions - Service software".

6.2 User interface

The following user interface is displayed each time the product is started.

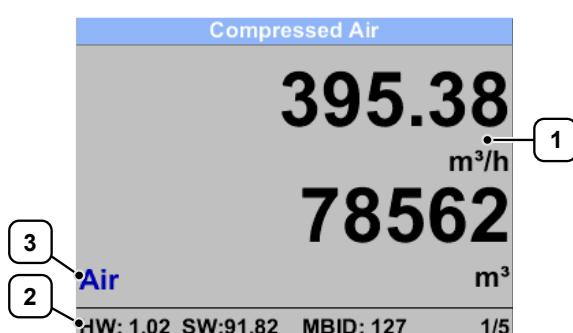


Figure 10: User interface | Main view (example)

1 Measured value

3 Gas type / status message

2 Status line

Status bar

Various information is displayed in the status bar:

- Hardware version
- Software version
- Modbus ID

7 Configuration

Open main menu

The main menu is the starting point for all central functions of the product.

NOTE

The main menu is password-protected.

Further information can be found in chapter "7.1 Set up basic settings".

- ▷ Tap the **OK** button.
- ▷ Enter the password.
- ⚠ Password on delivery: **0000**
- ✓ The **main menu** opens.

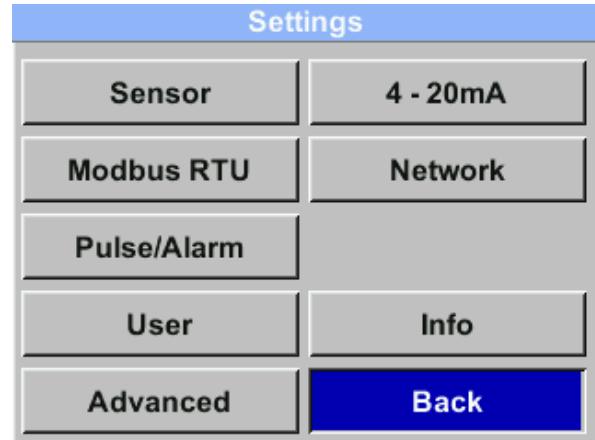


Figure 11: Open main menu (example)

7.1 Set up basic settings

Open user settings

- ▷ Select the **User** button.

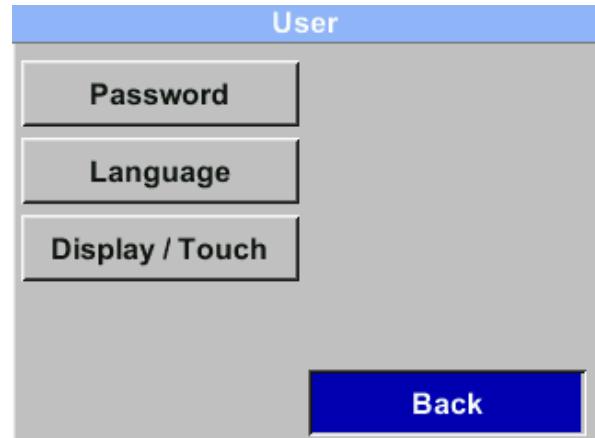


Figure 12: Open user settings (example)

Activate access protection

The main menu can be password-protected against unauthorized access.

- ▷ Select the Password button.
- ▷ Enter the desired password.
 - ⓘ The password must be a four-digit numeric code.
 - ⓘ Password on delivery: **0000**
- ▷ Repeat the entry for confirmation.
- ▷ Make a note of the password in a safe place.
 - ⓘ **If lost:** Contact customer service to reset the password.

Figure 13: Entering a new password (example)

Set language

German, English, Spanish and French are currently available as language settings.

- ▷ Select the Language button.
- ▷ Select the desired settings.

Set display

A reduced screen brightness value and a short screen switch-off time help to minimize energy consumption.

NOTICE

Burn-in of the display

High, continuous display brightness can cause the display to burn in, among other things. Dimming the display helps to reduce this risk.

- ▷ Select the Display / Touch button.
 - ⓘ If the Rotate screen function is activated, the display is rotated by 180°.
 - ⓘ If the Key lock function is activated, operation is only possible after restarting and calling up the main menu within 10 seconds.
- ▷ Select the desired settings.

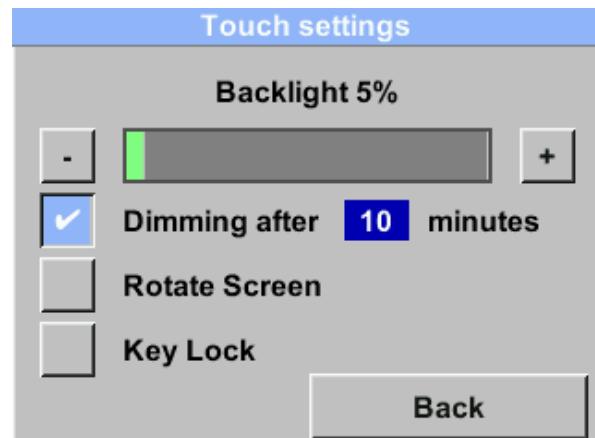


Figure 14: Setting the display (example)

7.2 Adjust configuration settings

CAUTION

Danger due to incorrect calibration

Improper adjustment of the parameters can lead to considerable deviations in the measured values.

- ▷ Parameters may only be adjusted by qualified specialists with expert knowledge of the system and the monitored gases.

Open sensor settings

▷ Select the Sensor button.
✓ The menu for configuring the sensor settings opens.

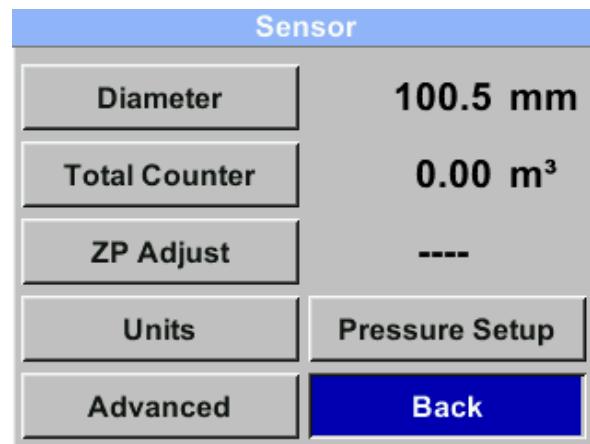


Figure 15: Set sensor parameters (example)

Adjust consumption meter reading

The consumption meter reading can be adjusted and reset to zero manually if required.

▷ Select the Consumption button.
▷ Select the desired setting.
▷ Select the button with the currently displayed unit (e.g. m³) to set the desired unit.
✓ The text on the button adapts to the selected unit.
▷ Select the CLR button to manually reset the consumption counter to zero.

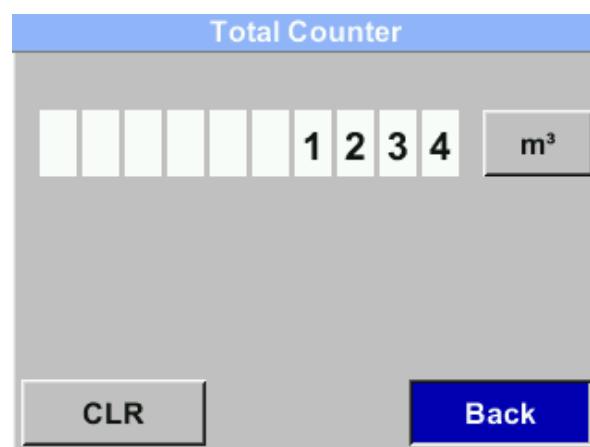


Figure 16: Adjust consumption meter reading (example)

NOTE

When the maximum value (1,000,000,000 [units]) is reached, the meter reading is automatically reset to zero.

Customize units

The system of units and measured variables can be adapted to country-specific specifications or individual requirements.

▷ Select the Units button.
▷ Select the desired settings.
✓ The display units are adopted according to the selection and displayed correctly in all relevant areas.

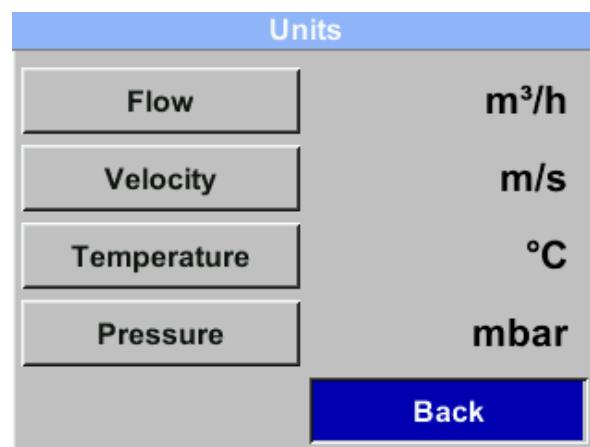


Figure 17: Customize units (example)

Adjusting reference conditions

To calculate the volume and consumption values correctly, the desired reference conditions for pressure and temperature must be defined.

- ▷ Select the **Advanced > Reference standard** command.
- ▷ Select the desired settings.
 - ⓘ Alternatively, 0 °C and 1013 hPa (= standard cubic meters) can be set as reference conditions.
 - ⓘ Operating pressure or operating temperature must **not be** entered as reference conditions.
- ▷ Select the **Default** button to restore the factory settings.

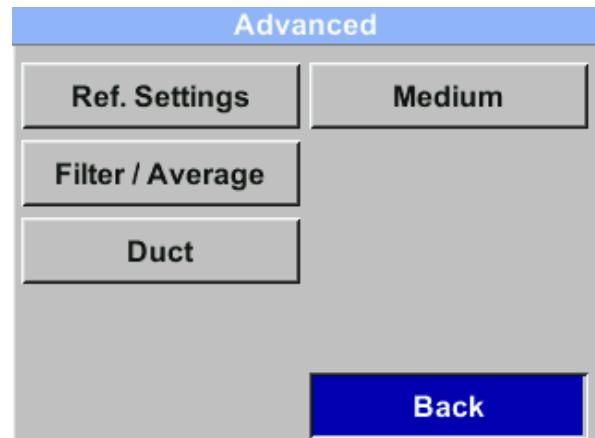


Figure 18: Adjusting reference conditions (example)

NOTE

In the Filter/Average menu item, both the attenuation of the measurement signal and the averaging period can be set.

It may be necessary to adjust the filter type for certain measurement applications:

- Normal: for general measurements
- Fast: for applications with very rapid changes in measured values
- Slow: for measurements after the compressor (pulsating flow)

7.3 Set interface parameters

Setting Modbus parameters (RTU)

For communication via the RS485 interface (Modbus RTU), the communication parameters must be adjusted before commissioning.

- ▷ Select the **Modbus RTU** button.
- ▷ Select the desired settings.
- ▷ Select the **Default** button to restore the factory settings.

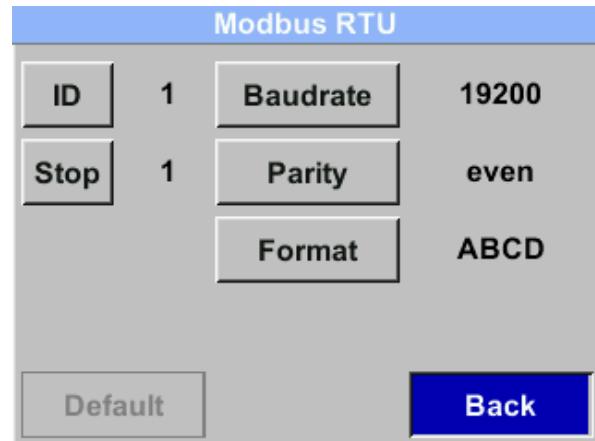


Figure 19: Setting Modbus parameters (example)

Parameters	Factory setting
ID	1
Baud rate	19200
Stop bit	1
Parity	even
Data format	ABCD (Big Endian)

Table 7: Modbus factory settings

Set Modbus TCP parameters (optional)

Prerequisite

- Optional Modbus TCP interface available

The optional Modbus TCP interface enables communication via the Modbus TCP protocol. The Modbus device address (unit identifier) can be selected in the range 1-247.

- Select the Network button.
- Select the IP address button to establish a connection to a computer.
 - DHCP activated: automatic integration into existing network without the need for manual configuration.
 - DHCP deactivated: manual integration into existing network (assignment of a static IP address).
- Select the desired settings.
- Select the Modbus TCP button to set the Modbus TCP parameters.
- Select the desired settings.
- Select the Default button to restore the factory settings.

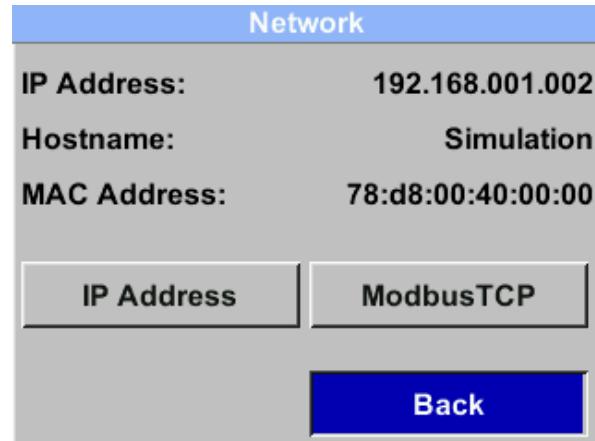


Figure 20: Setting Modbus TCP parameters (example)

Function code	Description
03	Read holding register
16	Write multiple registers

Table 8: Supported Modbus function codes

Parameters	Factory setting
ID	1
port	502
Data format	ABCD (Big Endian)
Timeout	10 s

Table 9: Factory settings Modbus TCP

Set M-Bus parameters (optional)

Prerequisite

- Optional M-Bus interface available

The optional M-Bus interface enables communication with consumption meters and control systems via the M-Bus protocol. The M-Bus address can be selected in the range 1-250. Both the primary address and the secondary address (ID) can be searched for automatically in the M-Bus system.

- ▷ Select the M-Bus button.
- ▷ Select the Address button to set the primary M-Bus address.
 - ⓘ The secondary M-Bus address (ID) is fixed and cannot be changed.
- ▷ Select the desired settings.
- ▷ Select the Baud rate button to set the baud rate.
 - ⓘ The baud rate can be selected with the values 2400, 4800 or 9600.
- ▷ Select the desired settings.
- ▷ Select the desired Value Information Field coding (VIF).
 - ⓘ Units as string activated: Plain text VIF (units are transmitted as ASCII characters.)
 - ⓘ Units as string deactivated: Primary VIF (coding according to M-Bus specification; unit and multiplier are stored in standardized codes).

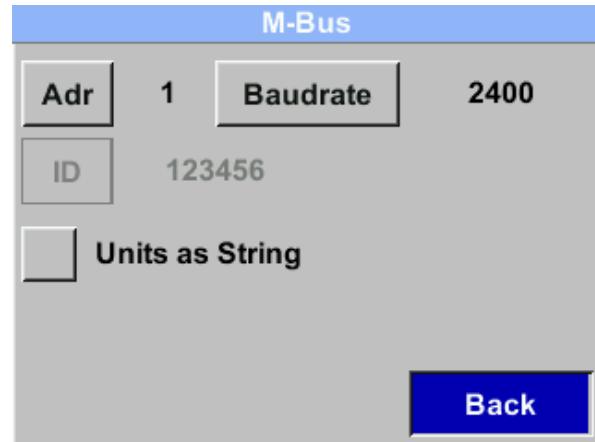


Figure 21: Setting M-Bus parameters (example)

Value	Designation	Unit
1	Consumption	m ³
2	Flow rate	m ³ /h
3	Gas temperature	°C
4 ¹	System pressure	bar

Table 10: Transmitted values (M-Bus)

Parameters	Factory setting
Primary M-Bus address	1
Baud rate	2400
ID	Serial number
Medium	Depending on application (gas or compressed air)
Manufacturer identification	CSI
VIF coding	Primary VIF

Table 11: Factory settings M-Bus

Set IO-Link parameters (optional)

Prerequisite

- Optional IO-Link interface available

The IO-Link option enables digital communication between the device and the control system. Device parameters can be read out, set and diagnostic information transmitted.

Required for configuration:

- IO-Link-capable master port
- Suitable IODD file (IO Device Description)

¹ Only available in conjunction with "Pressure" option.

Basics for the configuration:

- Standard sensor cable, 3-wire, max. 20 m (according to specification)
- Supported mode: SDCI
- Connection to IO-Link master port required
- Integration via IODD file
- Parameterization and diagnostics possible via IO-Link engineering tools or control system

Designation	Value
Transmission type	COM 2 (38.4 kBaud)
Specification	V1.1
SDCI standard	IEC 61131-9 CDV
Device ID	1005 - 1008 / 0x3ED - 0x3F0 (depending on upper range value)
Profile	Identification and Diagnosis (0x4000)
SIO mode	No
Required master port class	A
Process data analog	4
Process data binary	---
Min. process cycle time	20.4 ms

Table 12: Interface parameters (IO-Link)

Setting HART parameters (optional)

Prerequisite

- Optional HART interface available

The optional HART interface enables the transmission of defined process values.

Variable	Unit	Class	Description
0	m ³ /h	Volumetric Flow	Flow value as shown in the display
1	m ³	Volume	Totalizer (integer portion) as shown in the display
2	°C	Temperature	Gas temperature as shown on the display
3 ¹	mbar	Pressure ²	System pressure (in the unit set on the display)

Table 13: Transmitted values (HART)

¹ Only available in conjunction with the "Pressure" option.

² Optional; NaN = no valid measured value (e.g. if the pressure sensor option is missing)

7.4 Set output parameters

Configuring an electrically isolated output

The galvanically isolated output can be defined as a pulse or alarm output.

- ▷ Select the Pulse/Alarm > Relay function command to set the output type.
- ▷ Select the desired settings.

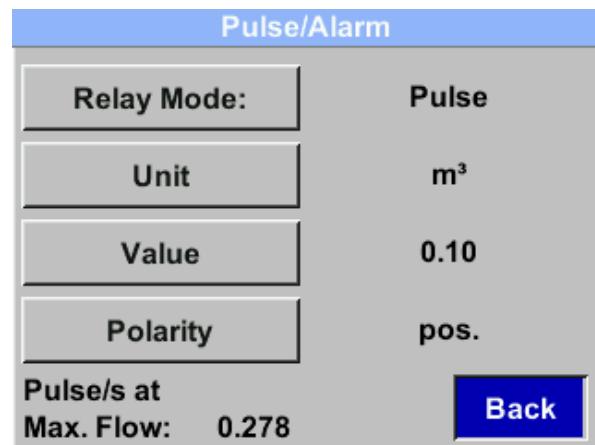


Figure 22: Configure galvanically isolated output (example)

Parameter	Description
Unit	Defines unit
Value	Defines alarm value or pulse value ¹
Hysteresis	Defines desired hysteresis <ul style="list-style-type: none"> • Exceeding: Alarm when value is exceeded • Fall below: Alarm when value falls below
Polarity	Defines the switching status <ul style="list-style-type: none"> • positive = 0 --> 1 (output: closed --> open) • negative = 1 --> 0 (output: open --> closed)

Table 14: Parameters for output configuration

Pulse output

A maximum of 50 pulses per second can be output. The pulses are output with a delay of 1 second.

Pulse value	m ³ /h	m ³ /min	l/min
0.1 l/pulse	18	0,3	300
1 l/pulse	180	3	3000
0.1 m ³ /pulse	18 000	300	300 000
1 m ³ /pulse	180 000	3 000	3 000 000

Table 15: Maximum flow rates for pulse output

NOTE

Inputs of pulse values that do not allow a display for the upper range value are not permitted. In this case, the input is rejected and an error message is displayed.

¹ The lowest pulse value is based on maximum consumption and 50 Hz pulse frequency.

Configuring the analog output

The measuring range of the analog output (4-20 mA) is freely configurable.

- ▷ Select the 4 - 20 mA button.
- ▷ Select the Channel 1 button to configure the measured value and the scaling.
 - ⓘ A measured value (temperature, speed or flow rate) can be assigned to each channel.
 - ⓘ Scaling can be automatic (Auto scaling = on) or manual (Auto scaling = off). With automatic scaling, this is calculated based on the pipe diameter, the maximum valid measuring range of the product and the reference conditions.
- ▷ Select the desired settings.
- ▷ Select the Error current button to specify which value is output at the analog output in the event of an error.
- ▷ Select the desired settings.

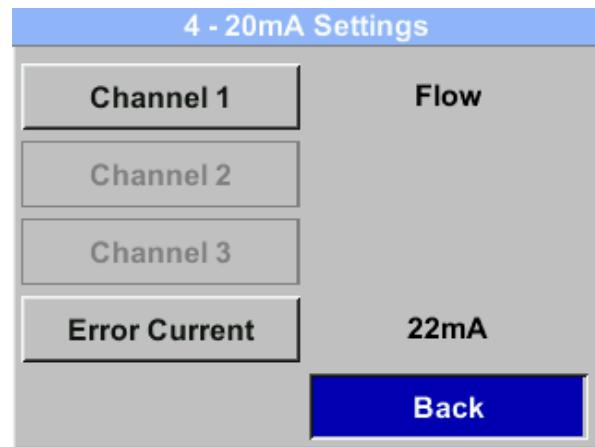


Figure 23: Configure analog output (example)

Analog output setting	Setting Meaning
2 mA	Sensor error / system error
22 mA	Sensor error / system error
None	Output according to NAMUR (3.8 mA - 20.5 mA) <ul style="list-style-type: none">• < 4 mA - 3.8 mA = measuring range undercut• > 20 mA - 20.5 mA = measuring range exceeded

Table 16: Output values for residual current (error current)

Output	Factory setting
Channel 1	0... maximum flow rate [m^3/h] (For maximum flow rate, see chapter "11.1 Technical data")
Channel 2 ¹	-20...+100 °C

Table 17: Factory settings analog output

¹ Only available in conjunction with "Analog output board" option.

8 Consumption measurement

8.1 Adjust measurement parameters

CAUTION

Danger due to incorrect calibration

Improper adjustment of the parameters can lead to considerable deviations in the measured values.

- ▷ Parameters may only be adjusted by qualified specialists with expert knowledge of the system and the monitored gases.

Open sensor settings

- ▷ Select the Sensor button.
- ✓ The menu for configuring the sensor settings opens.

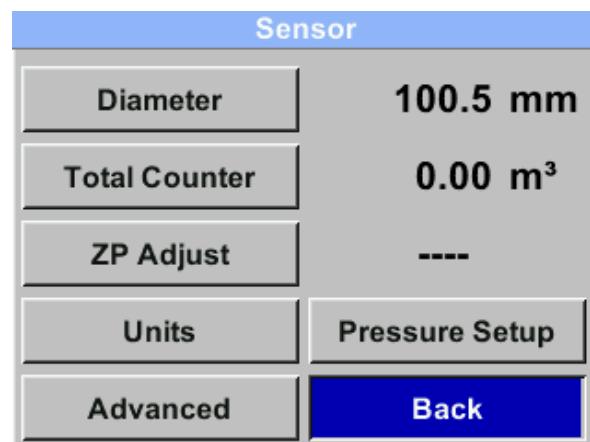


Figure 24: Set sensor parameters (example)

8.1.1 Carry out zero point adjustment

Preparing the zero point adjustment

A zero point adjustment only provides reliable measurement results under stable conditions. It must be carried out with the system pressure applied and without flow.

- ▷ Make sure that there is no flow in the pipe.
- ⓘ To do this, apply system pressure to the product.
- ▷ Then start the zero point adjustment via the user interface on the sensor.

Perform zero point adjustment

NOTE

If the sensor displays a flow value greater than 0 m³/h without flow, the zero point of the characteristic curve can be set at this point.

- ▷ Select the command Zero point > Zero point.
- ▷ Follow the steps displayed to adjust the zero point.
- ✓ After successful zero point adjustment, the differential pressure value DeltaPressure is displayed on the user interface with **0.00 hPa**.
- ⓘ The sensor can be reset to the factory setting using the Reset button.

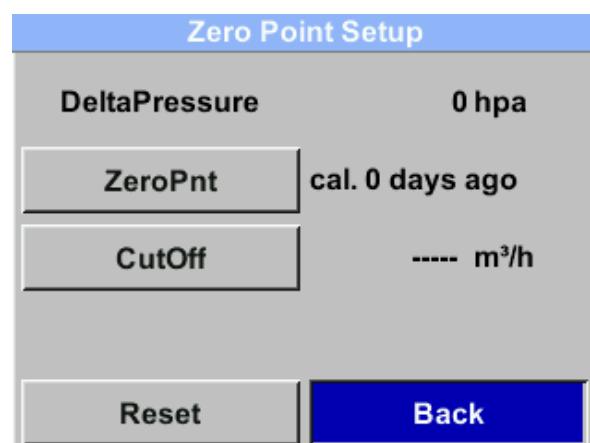


Figure 25: Performing zero point adjustment (example)

8.1.2 Adjust creep suppression

Adjusting creeping flow suppression

Creeping flow suppression ensures that flow values below the defined "low flow cut-off" value are displayed as 0 m³/h and are not included in the consumption meter. In this way, very low flow values that can no longer be reliably measured are suppressed.

- ▷ Select the command Zero point > Creeping quantities.
- ▷ Select the desired setting.

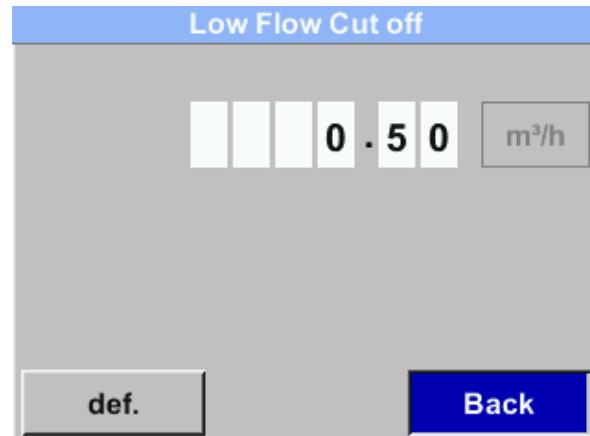


Figure 26: Adjust creeping flow suppression (example)

8.2 Carry out consumption measurement

Query measurement data

Several views are available on the home screen to display the measured values.

- ▷ Select the ▷ button to switch to the next view.

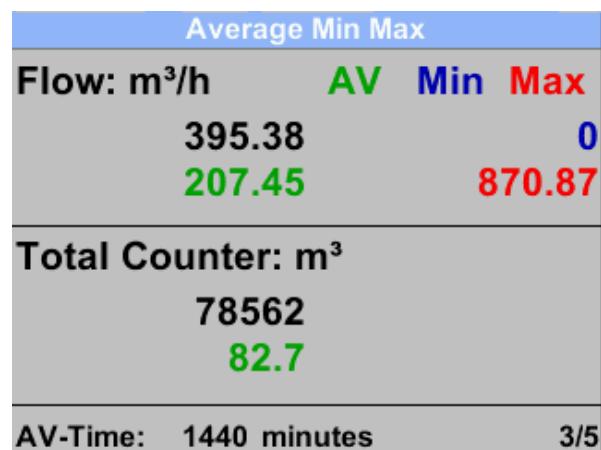


Figure 27: Average value view (example)

9 Maintenance and servicing

CAUTION

Safety instructions

- ▷ The product may only be serviced by a qualified electrician.
- ▷ Work on the electrical equipment of the product may only be carried out by qualified electricians or by instructed persons under the direction and supervision of a qualified electrician in accordance with the electrotechnical regulations.
- ▷ Spare parts must comply with the technical requirements specified by the manufacturer (CS INSTRUMENTS). This is always guaranteed with original spare parts.

NOTICE

Measuring errors due to dirt particles in the compressed air

Dirt particles and fluids can contaminate the product and lead to a malfunction or fault.

- ▷ The system operator must ensure the prescribed purity of the fluids approved for the application as well as appropriate cleaning and maintenance intervals.
- ▷ The manufacturer (CS INSTRUMENTS) accepts no warranty or liability for incorrect use.

NOTE

Unless expressly described otherwise, only begin maintenance and servicing work after

- the product has been disconnected from the power supply,
- the product has been switched off and secured against being switched on again.

9.1 Clean product

Cleaning the housing

If the housing is dirty, clean it with solvent-free cleaning agents.

- ▷ Use a slightly damp, lint-free cloth to clean the housing regularly.
- ▷ Check the product for damage and corrosion.

Cleaning the screen

If the screen is dirty, clean it with solvent-free cleaning agents.

- ▷ Use a slightly damp, lint-free cloth to clean the screen regularly.

Cleaning the sensor

Prerequisite

- The product is de-energized and freely accessible.
- The system is depressurized.

Contamination on the sensors can lead to measurement deviations.

Depending on the ambient conditions, deposits can form at different rates.

The user is responsible for determining suitable maintenance intervals.

- ▷ Loosen the connection nut.
- ▷ Remove the sensor from the measuring section.
- ▷ Clean the sensor by swirling it in water, a non-aggressive cleaning agent or isopropanol or in an ultrasonic bath.
- ▷ Dry the sensor with compressed air.
- ▷ Screw the sensor (SW 32) pressure-tight into the measuring section.
 - ① The existing groove ensures the correct alignment of the sensor.
- ▷ Observe the direction of flow indicated on the product (flow direction arrow).
 - ① Depending on the product variant, the direction arrow is attached as a sticker on the measuring section, on the housing or on the sensor shaft.
- ▷ Check the installation for leaks and a secure fit.
- ▷ Tighten the connection nut.
 - ① Tightening torque: 25-30 Nm

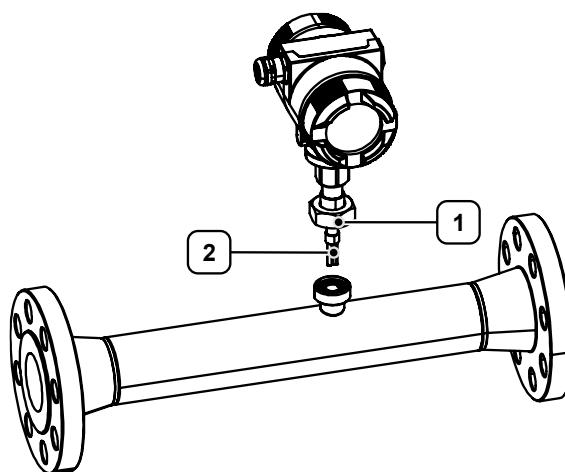


Figure 28: Cleaning the sensor (example)

1 Connection nut 2 Sensor

9.2 Check cables

DANGER

Danger to life due to electrical voltage

During installation, maintenance or in the event of a fault, touchable conductive parts can carry dangerous voltages. Contact with uninsulated parts or mains voltage can lead to serious injury or death.

- ▷ Do not operate the product if power supply cables are damaged or housing parts are defective or removed.
- ▷ Strictly observe all locally applicable regulations and safety regulations.
- ▷ Only carry out work on electrical connections when the power supply is switched off. Secure the product against unintentional restarting.
- ▷ Check all electrical connections before commissioning and regularly during operation.

CAUTION

Danger from commissioning a damaged product

If a damaged product is installed or put into operation, it may result in functional failures, electrical hazards, or mechanical risks.

- ▷ Before each start-up, inspect the product, accessories, and all supply lines for visible damage, loose parts, or missing components.
- ▷ Immediately take any defective product out of operation immediately.

Check cables

Prerequisite

- The product is de-energized and freely accessible.

The electrical cables of the product must be checked regularly by a qualified person.

The user is responsible for determining suitable maintenance intervals.

- ▷ Check the electrical cables for damage.

9.3 Check mechanical components and connections

Check mechanical components and connections

The mechanical and electrical connections of the system must be checked for tightness, integrity and leak tightness.

The user is always responsible for determining suitable maintenance intervals.

Prerequisite

- The product is de-energized and freely accessible.

- ▷ Check all pipe connections, hoses and screw connections for tightness and visible leaks.

- ▷ Carefully tighten any loose connections.

- ▷ Check for wear, cracks or leaks.

- ▷ Check the clamping points of the electrical installation for firm contact and freedom from corrosion.

- ▷ Carry out a leak test of the entire system.

9.4 Perform calibration

Observe calibration intervals

The user is responsible for determining suitable intervals.

Increased maintenance work is to be expected under the following conditions in particular:

- Extreme temperatures (especially low temperatures)
- Damp compressed air
- Falling or overloading of the product
- Interventions for repair purposes

- ▷ Observe the specifications in the quality management manual (QM system).

 ⚠ The calibration interval must be defined dynamically - preferably using a procedure anchored in the QM system. Without corresponding specifications, the determination is risk-based and based on economic considerations.

 Frequent recalibration: higher operating costs

 Rare recalibration: risk of invalid measurement results

- ▷ Always have the product calibrated after special operating conditions.

Have a factory calibration performed

- ▷ Send the product to the manufacturer (CS INSTRUMENTS).
 ⚠ An identical replacement product should be kept in stock for use in critical systems.
- ▷ Select the Info button to display the calibration conditions.

Calibration Conditions	
Ref. Pres	1000.00mbar
Ref. Temp	0.00°C
Diameter	0.00mm
Pressure	6000.00mbar
Temperature	0.00°C
Executing	Standard

Back 3/3

Figure 29: Display calibration conditions (example)

9.5 Update software

9.5.1 Download software package

- ▷ Visit the manufacturer's homepage at (CS INSTRUMENTS).
- ▷ Download the appropriate software package.
 - ⓘ The current hardware and software versions along with the serial number are displayed under the About tab.
- ▷ Save the software package in the desired target directory or on the desired USB storage device.

9.5.2 Establish connection

- ▷ Connect the service/diagnostic interface (RS485) of the product to your computer.
- ⓘ Further information can be found in chapter " 5.5 Connect product".

NOTICE

Avoiding inconsistent data

The product is locked during an active connection with the computer. This prevents changes to the product and protects against inconsistent or incomplete data transfers.

- ▷ Do not disconnect manually during data transfer.

9.5.3 Performing a software update

The software update is carried out via the service software.

- ▷ Contact customer service to carry out the software update.

9.6 Error states

9.6.1 Correct error states

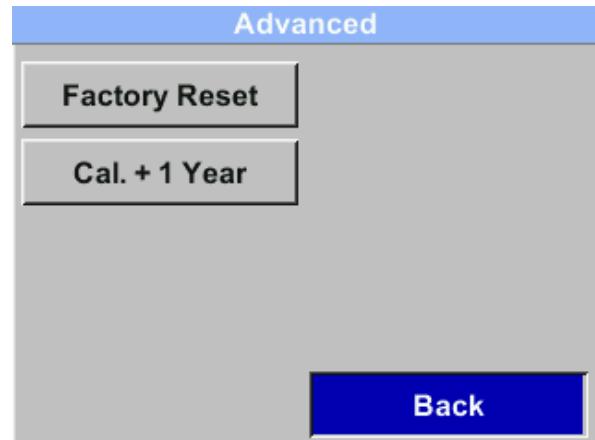
Correcting error states

Warnings continue to allow measurement without affecting the measured value. Measurement is not possible in the event of errors.

- ▷ Contact customer service if necessary.

Message	Message Description	Remedy
Low voltage	Supply voltage < 18 V. Sensor cannot measure properly. No measured values are available for flow rate, consumption and speed.	▷ Check the supply voltage. ▷ Ensure that it is within the range of 18... 36 V DC.
Internal error	Internal read error, e.g. on the EEPROM or AD converter.	▷ Restart the sensor. ▷ If the error persists, contact customer service.
Temp out of range	Media temperatures outside the specified temperature range. Media temperatures outside the specified temperature range result in measured values outside the sensor limits.	▷ Check the media temperature. ▷ Ensure that it is within the specified temperature range.
Low voltage 4-20 mA	Supply voltage < 17.5 V. A minimum supply voltage of 17.5 V is required for sensors with galvanically isolated 4-20 mA output.	▷ Check the wiring of the 4-20 mA output.
Not calibrated	Error message is issued if an incorrect gas is selected in the sensor settings. The sensor is calibrated for the specific application.	▷ Check the gas selection in the settings. ▷ Select the gas calibrated for the sensor.
Pressure Error	Error message if the signal is faulty or the internal pressure sensor is defective.	▷ Check the function of the sensor. ▷ If the error persists, contact customer service.
Heater error	Error message if the signal is faulty or the internal heater sensor is defective.	▷ Check the function of the sensor. ▷ If the error persists, contact customer service.

Message	Message Description	Remedy
Next cal. elapsed	Period for next calibration exceeded.	▷ Carry out a calibration of the sensor.


Table 18: Error and status messages

9.6.2 Restore factory settings

Restoring the factory settings

If necessary, the product can be reset to the factory settings to restore the delivery status.

▷ Select the **Advanced > Factory reset** command.

Figure 30: Restore factory settings (example)

9.7 Customer service

For rapid processing by customer service

Prerequisite

- Material number (product rating plate)
- Serial number (product rating plate)

▷ Describe the problem as precisely as possible.

▷ Make a note of any error messages displayed.

▷ Inform customer service about:

- When does the problem occur?
- How often does it occur?
- What changes were last made to the product, the configuration, or the environment?

10 Decommissioning and disposal

Decommissioning

Decommissioning is defined as an extended period of non-use of the components. The components must then be protected from external influences.

- ▷ If necessary, disconnect the components from the power supply.
- ▷ Properly package the components if they will not be used for an extended period.
- ▷ Store the components in a manner that prevents exposure to significant temperature fluctuations. Resulting condensation can lead to moisture buildup and cause corrosion.

Disposal

Parts and components that have reached the end of their service life, e.g. due to wear, corrosion and mechanical stress, must be properly disposed of after disassembly, in accordance with national regulations.

The product and packaging contain recyclable materials that must not be disposed of with residual waste.

- ▷ Separate the components after recycling.
 - ⓘ Disposal code according to the European Waste Catalog (EWC) 16 02 14, electrical and electronic devices and their components.
- ▷ Dispose of the components in an environmentally responsible manner, in accordance with local regulations or through a certified disposal company.

NOTE

Information on environmentally responsible disposal can be obtained from local authorities, or certified disposal companies.

- ▷ Alternatively, you can return the product to the manufacturer (CS INSTRUMENTS) at the end of its service life.

11 Appendix

11.1 Technical data

Parameters	Specification	Unit
Weight	4.0 - 15.0 (depending on version)	kg
Power supply	18... 36 via SELV 5 W Standard version: PoE in accordance with IEEE 802.3af, class 2 (3.84...6.49 W)	V DC
Fuse protection	T2.5L, 2.5 A / 125 V, slow-blow (device protection through integrated fuse against overcurrent)	
Power consumption	max. 5	W
Electrical connection	Via cable entry to internal connections	
Measuring range	Depending on version: <ul style="list-style-type: none">Low speed version: max. 50Standard version: max. 92.7Max Speed version: max. 185High Speed version: max. 224 [Flow velocity (compressed air ¹)]	m/s
Measuring principle	Thermal mass flow sensor	
Response time	(t90): < 3 s	
Measuring accuracy	Depending on version: <ul style="list-style-type: none">±1.5% of v. M.², repeatability ±0.3% of v. E.³ (with correct installation)±1.0% f.s., repeatability ±0.3% f.s. (with correct installation) (Data based on ambient temperature 22 °C ±2 °C and system pressure 6 bar)	
Repeatability	0.25% of reading (with correct installation)	
Measured variables	Flow rate, total consumption, pressure, temperature, speed	
Operating pressure	-1...+40	bar
Mounting thread	Depending on version: <ul style="list-style-type: none">R male threadNPT male threadFlange EN 1092-1Flange ANSI/ASME B16.5 Class 150Flange ANSI/ASME B16.5 Class 300	
Display	TFT color display Size: 2" Resolution: 320 x 240 pixels	
Digital output	<ul style="list-style-type: none">RS485 (Modbus-RTU), according to EIA/TIA-485 standardModbus-TCP Ethernet (optional)M-Bus (optional)IO-Link (optional)HART (optional)	
Analog output	<ul style="list-style-type: none">1 x 4...20 mA active (not galvanically isolated), $_{RL} < 500 \Omega$2 x 4...20 mA active (galvanically isolated) (optional)	
Pulse output	galvanically isolated; potential-free switching contact; max. 48 V DC, 150 mA; max. 50 Hz	
Alarm output	galvanically isolated; max. 48 V DC, 150 mA; NC (normally closed)	

¹ based on ISO 1217 at 1000 mbar and 20 °C

² v. M. = of measured value

³ v. E. = of final value

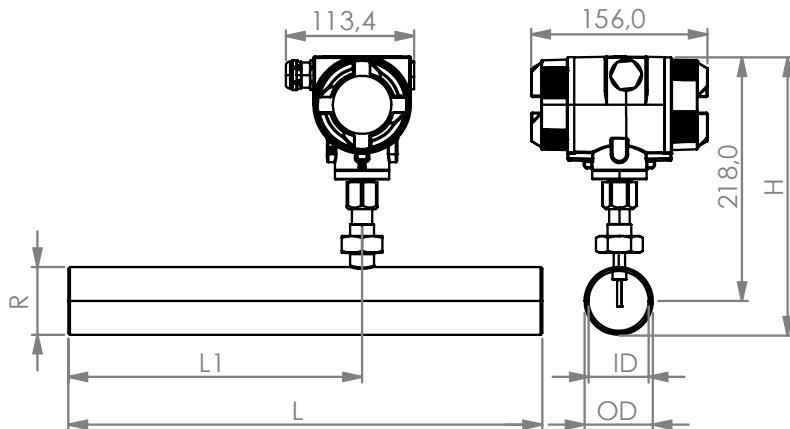

Parameters	Specification	Unit
Area of application	Indoor and outdoor use	
Degree of soiling	2	
Ambient temperature	-20...+70	°C
Storage temperature	-40...+80	°C
Air humidity	max. 90% relative humidity, non-condensing	
Altitude clearance	up to 4000 m above sea level (Use above 2000 m only with correspondingly approved power supply)	
Protection class	IP67	

Table 19: Technical data VA 570

Parameters	Specification	Unit
Measuring medium	Compressed air (at least ISO 8573-1 (particle-moisture-oil) class 5-6-4)	
Materials in contact with the medium	Stainless steel 1.4404	
Media temperature	Standard version: -40...+180	°C
	Explosion-proof version: -20 ...+120	
Media humidity	max. 99.9% relative humidity, non-condensing	

Table 20: Technical data | Measuring medium

11.2 Dimensions

Figure 31: Dimensions

Measuring section	R	L	L1	OD	ID	H	Unit
DN 15	R 1/2" (A-20)	300	210	21,3	16,1	228	mm
DN 20	R 3/4"(A-20)	475	275	26,9	21,7	231	mm
DN 25	R 1"(A-25)	475	275	33,7	27,3	235	mm
DN 32	R 1 1/4"(A-25)	475	275	42,4	36,0	239	mm
DN 40	R 1 1/2"(A-25)	475	275	48,3	41,9	242	mm
DN 50	R 2"(A-30)	475	275	60,3	53,1	248	mm

Table 21: Measuring section with connection thread (ISO 7-1, male thread)

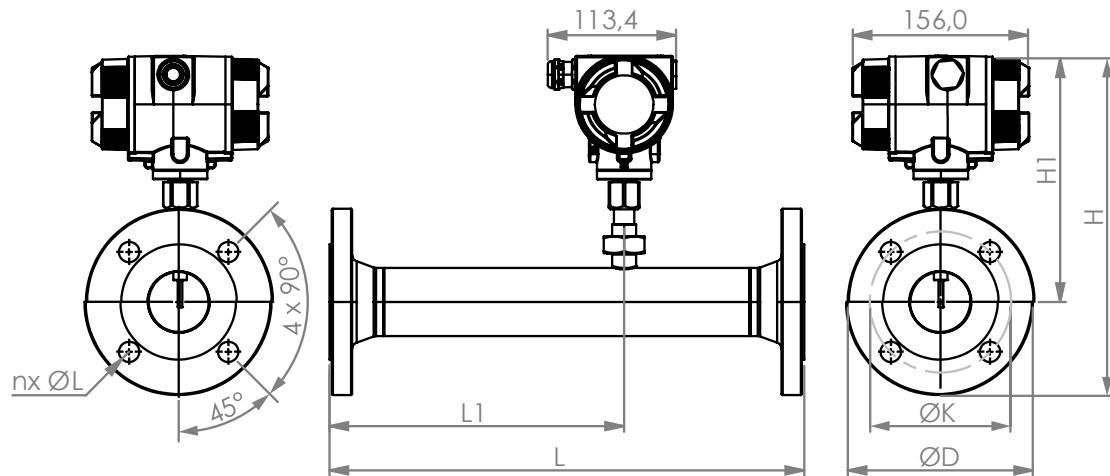


Figure 32: Dimensions

Measuring section	ØD	ØK	nx ØL	L	L1	OD	ID	H	H1	Unit
DN 15	95	65	4 x 14	300	210	21,3	16,1	267	218	mm
DN 20	105	75	4 x 14	475	275	26,9	21,7	270	218	mm
DN 25	115	85	4 x 14	475	275	33,7	27,3	275	218	mm
DN 32	140	100	4 x 18	475	275	42,4	36,0	288	218	mm
DN 40	150	110	4 x 18	475	275	48,3	41,9	293	218	mm
DN 50	165	125	4 x 18	475	275	60,3	53,1	300	218	mm
DN 65	185	145	8 x 18	475	275	76,1	68,9	320	228	mm

11.3 Measuring ranges

Version	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"	3"	Unit
Low Speed	20	45	75	140	195	320	550	765	m ³ /h
Standard	45	85	145	265	365	600	1025	1420	m ³ /h
Max speed	90	175	290	530	730	1195	2050	2840	m ³ /h
High Speed	110	215	355	640	885	1450	2480	3440	m ³ /h

Table 22: Upper range values | reference conditions: according to ISO 1217 (20 °C, 1000 mbar), medium: compressed air

Version	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"	3"	Unit
Low Speed	20	40	70	130	180	295	505	705	m ³ /h
Standard	40	80	135	240	335	550	945	1305	m ³ /h
Max speed	80	160	270	485	670	1100	1885	2610	m ³ /h
High Speed	100	195	325	590	815	1330	2280	3165	m ³ /h

Table 23: Upper range values | reference conditions: according to ISO 2533 (0 °C, 1013.25 mbar), medium: compressed air

Version	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"	3"	Unit
Low Speed	35	75	120	220	305	505	865	1200	m ³ /h
Standard	70	135	230	415	570	935	1605	2225	m ³ /h
Max speed	140	275	460	830	1140	1870	3205	4440	m ³ /h
High Speed	170	335	555	1005	1385	2265	3880	5380	m ³ /h

Table 24: Upper range values | reference conditions: according to ISO 2533 (0 °C, 1013.25 mbar), medium: argon

Version	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"	3"	Unit
Low Speed	20	45	75	140	195	320	545	760	m ³ /h
Standard	45	85	145	260	360	590	1015	1405	m ³ /h

Version	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"	3"	Unit
Max speed	90	175	290	525	720	1185	2030	2810	m ³ /h
High Speed	105	210	350	635	875	1430	2455	3405	m ³ /h

Table 25: Upper range values | reference conditions: according to ISO 2533 (0 °C, 1013.25 mbar), medium: carbon dioxide

Version	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"	3"	Unit
Low Speed	20	40	70	130	180	295	505	705	m ³ /h
Standard	40	80	135	240	335	550	945	1305	m ³ /h
Max speed	80	160	270	485	670	1100	1885	2610	m ³ /h
High Speed	100	195	325	590	815	1330	2280	3165	m ³ /h

Table 26: Upper range values | reference conditions: according to ISO 2533 (0 °C, 1013.25 mbar), medium: nitrogen

Version	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"	3"	Unit
Low Speed	20	45	75	135	185	305	525	730	m ³ /h
Standard	40	80	140	250	345	570	980	1355	m ³ /h
Max speed	85	165	280	505	695	1140	1955	2710	m ³ /h
High Speed	105	205	340	610	845	1380	2365	3280	m ³ /h

Table 27: Upper range values | reference conditions: according to ISO 2533 (0 °C, 1013.25 mbar), medium: oxygen

Version	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"	3"	Unit
Low Speed	20	45	75	140	190	315	540	750	m ³ /h
Standard	40	85	140	260	355	585	1005	1395	m ³ /h
Max speed	85	170	285	520	715	1170	2010	2785	m ³ /h
High Speed	105	210	345	630	865	1420	2435	3375	m ³ /h

Table 28: Upper range values | reference conditions: according to ISO 2533 (0 °C, 1013.25 mbar), medium: nitrous oxide

Version	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"	3"	Unit
Low Speed	15	25	45	85	115	190	325	450	m ³ /h
Standard	25	50	85	155	215	355	605	840	m ³ /h
Max speed	50	105	170	310	430	705	1210	1680	m ³ /h
High Speed	65	125	210	380	520	855	1465	2035	m ³ /h

Table 29: Upper range values | reference conditions: according to ISO 2533 (0 °C, 1013.25 mbar), medium: natural gas (NG)¹

11.4 Register assignment

Register	Address	Number of bytes	Data type	Description	Standard	Access	Unit/Comment
2001	2000	2	uint16	Modbus ID	1	Read-Write	Modbus ID 1...247
2002	2001	2	uint16	Baud rate	4	Read-Write	0 = 1200 1 = 2400 2 = 4800 3 = 9600 4 = 19200 5 = 38400 6 = 57600 7 = 115200
2003	2002	2	uint16	Parity	1	Read-Write	0 = none 1 = even

¹ Other gases on request.

Register	Address	Number of bytes	Data type	Description	Standard	Access	Unit/Comment
							2 = odd
2004	2003	2	uint16	Number of stop bits		Read-Write	0 = 1 stop bit 1 = 2 stop Bit
2005	2004	2	uint16	Word Order	0xABCD	Read-Write	0xABCD = Big Endian 0xCDAB = Middle Endian
2069	2068	4	float	Pressure Type (Relative / Absolute)		Read-Write	0 = Relative 1 = Absolute

Table 30: Modbus settings (registers 2001-2005)

Register	Address	Number of bytes	Data type	Description	Standard	Access	Unit/Comment
1101	1100	4	float	Flow in m ³ /h		Read-Only	
1109	1108	4	float	Flow in Nm ³ /h		Read-Only	
1117	1116	4	float	Flow in m ³ /min		Read-Only	
1125	1124	4	float	Flow in Nm ³ /min		Read-Only	
1133	1132	4	float	Flow in ltr/h		Read-Only	
1141	1140	4	float	Flow in NLtr/h		Read-Only	
1149	1148	4	float	Flow in ltr/min		Read-Only	
1157	1156	4	float	Flow in NLtr/min		Read-Only	
1165	1164	4	float	Flow in ltr/s		Read-Only	
1173	1172	4	float	Flow in NLtr/s		Read-Only	
1181	1180	4	float	Flow in cfm		Read-Only	
1189	1188	4	float	Flow in Ncfm		Read-Only	
1197	1196	4	float	Flow in kg/h		Read-Only	
1205	1204	4	float	Flow in kg/min		Read-Only	
1213	1212	4	float	Flow in kg/s		Read-Only	
1221	1220	4	float	Flow in kW		Read-Only	
1269	1268	4	uint32	Consumption m ³ before comma	x	Read-Only	
1275	1274	4	uint32	Consumption Nm ³ before comma	x	Read-Only	
1281	1280	4	uint32	Consumption ltr before comma	x	Read-Only	
1287	1286	4	uint32	Consumption NLtr before comma	x	Read-Only	
1293	1292	4	uint32	Consumption cf before comma	x	Read-Only	

Register	Address	Number of bytes	Data type	Description	Standard	Access	Unit/Comment
1299	1298	4	uint32	Consumption Ncf before comma	x	Read-Only	
1305	1304	4	uint32	Consumption kg before comma	x	Read-Only	
1311	1310	4	uint32	Consumption kWh before comma	x	Read-Only	
1347	1346	4	float	Velocity m/s			
1355	1354	4	float	Velocity Nm/s			
1363	1362	4	float	Velocity Ft/min			
1371	1370	4	float	Velocity NFt/min			
1419	1418	4	float	GasTemp °C			
1427	1426	4	float	GasTemp °F			
1475	1474	4	float	System pressure mBar		Read-Only	Value depending on register "Pressure type" setting
1481	1480	4	float	System pressure Bar		Read-Only	
1487	1486	4	float	System pressure PSI		Read-Only	
1057	1056	4	float	Delta P		Read-Only	Unit as defined in sensor

Table 31: Value register (register 1001-1500)

11.5 Declaration of conformity

KONFORMITÄTSERKLÄRUNG DECLARATION OF CONFORMITY

Wir
We CS Instruments GmbH & Co.KG
Gewerbehof 14, 24955 Harrislee

Erklären in alleiniger Verantwortung, dass das Produkt
Declare under our sole responsibility that the product

Verbrauchs-/ Durchflusssensor VA 570
Flow Sensor VA 570

den Anforderungen folgender Richtlinien entsprechen:
We hereby declare that above mentioned components comply with requirements of the following EU directives:

Elektromagnetische Verträglichkeit Electromagnetc compatibility	2014/30/EU 2014/30/EC
RoHS (Restriction of certain Hazardous Substances)	2011/65/EC & 2015/863/EC

Angewandte harmonisierte Normen:

Harmonised standards applied:

EMV-Anforderungen EMC requirements	EN 55011:2016 + A2:2021-04 EN 61326-1: 2013-07
RoHS (Restriction of certain Hazardous Substances)	EN IEC 63000:2018

Das Produkt ist mit dem abgebildeten Zeichen gekennzeichnet.
The product is labelled with the indicated mark.

Harrislee, den 23.03.2023

Wolfgang Blessing Geschäftsführer

CS INSTRUMENTS GmbH & Co. KG

Zindelsteiner Str. 15 | 78052 VS-Tannheim | GERMANY

Tel. +49 7705 978 99 0 | info@cs-instruments.com

www.cs-instruments.com